Elementary Statistics	Name:
Study Guide 31	Class:
Due Date:	Score:

Your solutions must be consistent with class notes & resources.

Be Neat, Organized, and No Work \Leftrightarrow No Points

- 1. Consider the following points below:
 - (2, 14), (6, 12), (6, 3), (8, 5), (14, 4), (18, 6), (18, 8), (20, 2)
 - (a) (2 points) Find the value of the correlation coefficient r.
 - (b) (2 points) Find the value of the coefficient of determination r^2 to the nearest percentage.
 - (c) (2 points) Find the equation of the regression line.

(b) _____

(a) _____

(d) (3 points) Plot each point and draw the regression line below.

2. The study time and the exam result for a random sample of 12 students in an elementary statistics course are shown in the following table.

Study Time	4	8	5	8	6	9	9	7	4	7	6	5
Exam Result	68	85	75	75	95	90	70	80	65	72	95	85

Table 1:Study Time & Exam Result

- (a) (2 points) Find the value of the correlation coefficient r.
- (a) ______ (b) (2 points) Find the value of the coefficient of determination r^2 to the nearest percentage and explain what the value means in the case.
 - (b) _____
- (c) (2 points) Find the equation of the regression line.

(c) _____

At $\alpha = 0.05$ level of significance, determine whether the correlation coefficient r is strong enough to conclude that the study time and the exam result are linearly correlated by using the data in table 1.

(d) (4 points) Clearly state H_0 and H_1 . State what each means in this problem.

*H*₀ : ______

(e) (3 points) Find the computed test statistic and the p-value. You must name TI command used.

C.T.S. : _____

p -Value : _____

(f) (2 points) Use the P-value method to determine whether the given linear correlation is significant or not.

(f) _____

(g) (3 points) Based on your conclusion, predict an exam result for a student whose study time was 6.5 hours.

(g) _____

3. (4 points) Given: n = 12, r = -0.605, and a significance level of 0.02, determine whether the given linear correlation is significant or not.

3. _____

4. (4 points) Given: n = 5, r = 0.844, and a significance level of 0.01, determine whether the given linear correlation is significant or not.

4. _____

5. (5 points) Eight pairs of data yield r = 0.708, and the regression equation y = 58 + 3x with $\bar{y} = 71.5$. At significance level of 0.10, What is the best predicted value for y for x = 5?

5. _____

6. (5 points) Six pairs of data yield r = -0.789, and the regression equation y = 66 - 4x with $\bar{y} = 54.5$. At significance level of 0.04, What is the best predicted value for y for x = 4?

6. _

7. (5 points) Eight pairs of data yield r = -0.875, and the regression equation y = 28 - 4.5x with $\bar{y} = 7.5$. At significance level of 0.1, What is the best predicted value for y for x = 4?

7. _____

Learning has never been achieved without errors.